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The way cooperation organizes dynamically strongly depends on the topology of the underlying interaction
network. We study this dependence using heterogeneous scale-free networks with different levels of �a� degree-
degree correlations and �b� enhanced clustering, where the number of neighbors of connected nodes are
correlated and the number of closed triangles are enhanced, respectively. Using these networks, we analyze a
finite population analog of the evolutionary replicator dynamics of the prisoner’s dilemma, the latter being a
two-player game with two strategies, defection and cooperation, whose payoff matrix favors defection. Both
topological features significantly change the dynamics with respect to the one observed for fully randomized
scale-free networks and can strongly facilitate cooperation even for a large temptation to defect, and should
hence be considered as important factors in the evolution and sustainment of cooperation.
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I. INTRODUCTION

How cooperation between unrelated individuals emerges
and survives in a population when selfish actions are re-
warded with a higher benefit is a fascinating area of research.
This question has been addressed by studying the evolution-
ary replicator dynamics �1–3� of simple two-player games
such as the prisoner’s dilemma, in which each individual can
adopt two strategies, cooperation and defection. Both indi-
viduals receive R under mutual cooperation and P under mu-
tual defection, while a cooperator receives S when playing
with a defector, which in turn receives T, with T�R� P
�S. Under these conditions, it is obviously better to defect,
independent of the opponents strategy. When the strategies
are allowed to spread within a population according to the
received payoffs, the cooperator density vanishes in the long-
time limit if every individual interacts with all other indi-
viduals.

Abandoning this “mean-field scenario” and restricting the
interaction between individuals according to the topology of
a network, where nodes are individuals and edges indicate
interactions, it has been shown that cooperation can survive
asymptotically �4–15�. The most surprising result is that co-
operation can even dominate over defection in heterogeneous
scale-free networks, where the number of neighbors of a
node �its degree� is broadly distributed. This somewhat coun-
terintuitive behavior has been analyzed in detail very re-
cently �16� by comparing the dynamical organization of co-
operation on so-called Barabási-Albert networks �which are
scale-free networks with a power-law degree distribution
P�k��k−3 �17�� and Erdös-Rényi networks �which show a
Poisson degree distribution�, elucidating the strong impact
the degree distribution has on the dynamics.

In this paper, we study how cooperation organizes dy-
namically in the prisoner’s dilemma game when played on
heterogeneous scale-free networks with different levels of �a�
degree-degree correlations and �b� enhanced clustering,
where the number of neighbors of connected nodes are cor-
related and the number of closed triangles are enhanced, re-
spectively. Besides the degree distribution, these two topo-
logical features are the two most characteristic ones and

significantly change the dynamics with respect to the one
observed for fully randomized scale-free networks, as we
show below. This is of importance since most empirically
observed social networks display degree-degree correlations
and enhanced clustering �18�.

II. MODEL

We have created networks of N=4000 nodes with a
power-law degree distribution P�k��k−� with scale param-
eter �=3 and �a� degree-degree correlations and �b� en-
hanced clustering. In case �a�, the degree-degree correlations
are characterized by a mean nearest-neighbor degree knn�k�
�� j jP�j �k� with P�j �k� being the conditional probability
that a connection starting at a node of degree k ends at a node
of degree j, which roots on the probability P�j ,k� that a
randomly chosen edge has nodes with degrees j and k at
its end as P�j �k�� P�j ,k� /�lP�l ,k�. If knn�k��const, there
are degree-degree correlations present in the network, so
that the number of neighbors of connected nodes are corre-
lated. The mean nearest-neighbor degree knn�k� is chosen to
follow a functional form knn�k��exp��ln�1+k /kmin���	 with
�� �−0.4,−0.2,0 ,0.2	. The networks are created using
the algorithm discussed in Ref. �19� which is capable of cre-
ating networks with given degree-degree correlations and
degree distribution. With a minimal and maximal degree
chosen as kmin=2 and kmax=40, �� �−0.4,−0.2	 results
in so-called disassortative networks with Newman cor-
relation coefficient r��k

−2� jkjk�P�j ,k�− jkP�k�P�j� / 
k�2�
�20,21�, with �k

2�
k3� / 
k�− 
k2�2 / 
k�2 and 
kq���kk
qP�k�,

of r=−0.104 and −0.058, respectively, �=0.2 results in as-
sortative networks with r=0.066, and �=0 in uncorrelated
networks. The mean nearest-neighbor degree knn�k� as mea-
sured in the created networks is shown in Fig. 1�a� and fol-
lows well the desired functional form �note that 
knn�
= 
k2� / 
k� for uncorrelated networks �19��. In case �b�, the
effective clustering is characterized by c̃�k��c�k� /��k�,
where c�k�=�i���k�ci / �NP�k�� is the degree-dependent clus-
tering and ��k�=1− �k−1�−1� j=1

k �k− j�P�j �k� the correspond-
ing upper limit �22�. Here, ��k� is the set of nodes with
degree k, and ci=2Ti / �ki�ki−1�� is the clustering of node i
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with Ti being the number of triangles it is part of. We choose
c̃�k�= c̃ with c̃� �0,0.1,0.2,0.3	. The networks are created
using a variant �23� of the algorithm discussed in Ref. �22�
which is capable of adjusting simultaneously the degree-
degree correlations �which we set to zero here�. With a mini-
mal and maximal degree chosen as kmin=2 and kmax=60,
c̃=0 results in networks without enhanced clustering,
whereas c̃�0 yields networks with enhanced clustering, i.e.,
enhanced number of closed triangles. The effective cluster-
ing c�k� /��k� as measured in the created networks is shown
in Fig. 1�b�. Due to topological constraints, the observed
effective clustering c�k� /��k� inevitably drops slightly below
the desired value for very large values of c̃, see Refs. �22,23�,
but otherwise the desired clustering is well-achieved. Note
that �=0 in case �a� and c̃=0 in case �b� both refer to an
ensemble of networks without degree-degree correlations
and without enhanced clustering, but with different values of
the maximal degree kmax �24�.

On the largest component of each created network �which
usually contains all 4000 nodes up to single ones�, the dy-
namics is implemented similarly as in Ref. �16�: �i� At the
beginning, each individual i of the population �i.e., each node
i� has the same probability of choosing cooperation or defec-
tion as the initial strategy. �ii� Following Refs. �4,9,10,16�,
we choose the prisoner’s dilemma payoffs as R=1, P=S=0,
and b�T�1, so that the temptation to defect b is the only
parameter, and implement one possible finite population
analog of the replicator dynamics �9,10�: At each time step
t, which represents one generation of the discrete evolution-
ary time, each node i in the network plays with all its
ki neighbors and accumulates its obtained payoff �i. Then,
all individuals i synchronously update their strategies si
by each one choosing one of its neighbors at random, say
j, and comparing their respective payoffs �i and � j. If
the neighbor’s payoff is lower or equal, � j 	�i, individual
i keeps its strategy si for the next time step. On the con-
trary, if the neighbor’s payoff is higher, � j ��i, i adopts
the strategy sj of j for the next time step with probability

P�si→sj�= �� j −�i� / �b max�ki ,kj	� �9,10�. We let the dynam-
ics run for a transient time of 5000 generations. Then, the
cooperator density is measured, the dynamics is evolved for
another 1000 time steps, and the cooperator density is mea-
sured again. If both densities, each averaged over 10 time
steps and separated by 1000 generations, deviate by more
than 0.01, the procedure is repeated another 1000 genera-
tions later. Otherwise, the actual measurement is started over
the next 10 000 time steps. To identify the topological as-
pects of the distribution of cooperators and defectors, we
follow Refs. �15,16� in defining pure cooperators and pure
defectors �i.e., fixed strategists� and fluctuating agents. All
data presented hereafter is averaged over 100 network real-
izations with ten independent dynamics with different initial
conditions on each network realization, resulting in 1000 dy-
namics per data point.

III. RESULTS AND DISCUSSION

A. Degree-degree correlations

When looking at how the evolutionary dynamics is af-
fected by the degree-degree correlations, one notices that co-
operators have marginally worse chances in assortative than
in disassortative networks for small temptation to defect b,
but considerably better chances for large b, the latter being
already conjectured in previous work �6� �note that the
Barabási-Albert networks studied in Ref. �16� are slightly
disassortative with a mean Newman correlation coefficient
r=−0.06 for N=4000, cf. Sec. III C�. The cooperator density

 changes significantly as a function of the degree-degree
correlations, see Fig. 2�a�, and the difference can be up to a
factor of 2 for large temptation to defect b, see Fig. 3�a� for
the ratio 
 /
�=0, despite that the range of assortativity-
disassortativity covered is rather small. The pure cooperator
density 
c �nodes that cooperate during the whole observa-
tion period� changes somewhat �see Figs. 2�b� and 3�b�, the
deviation of 
c /
c

�=0 from 1 for b�2 is mainly due to the
very small pure defector density 
c

�=0�. An intermediate be-
havior is observed in the mean pure defector density 
d
�nodes that defect during the whole observation period�, see
Figs. 2�c� and 3�c�. The pure cooperators are located on a
single connected component in the vast majority of the cases,
as measured by the mean number Cc of such components,
see Fig. 2�d�, which has already been observed for Barabási-
Albert networks �16� �the decrease of Cc below 1 for large
temptation to defect b is caused by realizations without pure
cooperators�. The surface-to-volume ratio of this component
of pure cooperators, as measured by the mean fraction ncf of
pure cooperators which have at least one neighbor with fluc-
tuating strategy, increases with decreasing pure cooperator
density 
c �i.e., increasing temptation to defect b�, see Fig.
2�e�. The discontinuous behavior of ncf at b=2 is caused by
stable interactions between pure cooperators and pure defec-
tors which occur for this integer value of b. As can be seen in
the mean degree � of cooperator nodes shown in Fig. 2�f�,
assortativity of a network causes the cooperators to be lo-
cated on the nodes with a larger degree. This can be under-
stood by looking at the correlations between the degree ki of
a node i and its state 
i. Nodes with a large degree tend to
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FIG. 1. �a� Measured mean nearest-neighbor degree knn�k� vs
degree k, for �=−0.4 �closed triangle�, −0.2 �open circle�, 0 �closed
square�, and 0.2 �open diamond�. As 
k�=3.08 and 
k2�=16.1 for
�=0, one has 
knn�=5.23. �b� Measured effective clustering
c�k� /��k� vs degree k for c̃=0 �open triangle�, 0.1 �closed circle�,
0.2 �open square�, and 0.3 �closed diamond�. Here, 
k�=3.12 and

k2�=18.2, so that 
knn�=5.83.
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cooperate �indicated by a large positive correlation coeffi-
cient between 
i and ki

2 in Fig. 4�a�, we plot the correlation
coefficient with ki

2 instead of ki, as this correlation coefficient
is somewhat larger which emphasizes the role of nodes with
a large degree�; but even more important than the degree ki
of a node i for its state 
i is the mean neighbor degree ki,nn
�indicated by an even larger positive correlation coefficient
between 
i and ki,nn

2 in Fig. 4�b��. Thus in assortative net-
works these two effects combine to lead to a large mean
degree of cooperators, whereas in disassortative networks
these two effects counteract as nodes with a large degree are
most likely connected to nodes with a small degree.

The correlations shown in Fig. 4 can be explained by the
observation that solely nodes with a large degree can initially
afford to be a cooperator and still convince their neighbors to
take over their strategy as they have more interactions in
which to accumulate payoff. Small degree neighbors of co-
operators on nodes with a large degree are easily convinced

to become cooperators as well, and thus an environment with
large degrees is positively correlated with a cooperating
strategy. Rong et al. correctly argued in Ref. �25� that nodes
with a large degree connected to each other which share
many neighbors will end up as defectors for a large tempta-
tion to defect if one of them is initially a defector. From this
they concluded that assortativity should therefore be a hin-
drance to cooperation, taking, however, assortativity to a
rather extreme point. Their argument implies that in assorta-
tive networks nodes with a large degree tend to share a com-
mon neighborhood, which is, however, true only if the
degree-degree correlations are so strong that the network dis-
integrates into mostly homogeneous subgraphs, which ulti-
mately destroys the heterogeneity of the observed networks.
This is not the case in heterogeneous complex networks as
created by our algorithms, and consequently the shared
neighborhood of two nodes with a large degree is rather
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FIG. 2. �a� Mean cooperator density 
, �b� mean pure cooperator
density 
c, �c� mean pure defector density 
d, �d� mean number of
components Cc of pure cooperators, �e� mean fraction ncf of pure
cooperators which have at least one neighbor with fluctuating strat-
egy, and �f� mean degree � of cooperator nodes vs temptation to
defect b for networks with a different amount of degree-degree
correlations; symbols are as in Fig. 1�a�.
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FIG. 3. �a� Mean cooperator density ratio 
 /
�=0, �b� mean pure
cooperator density ratio 
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c

�=0, and �c� mean pure defector density
ratio 
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d

�=0 vs temptation to defect b for networks with a different
amount of degree-degree correlations; symbols are as in Fig. 1�a�.
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FIG. 4. �a� Mean correlation coefficient r�
i ,ki
2� between the

cooperator density 
i and the squared degree ki
2 of site i and �b�

mean correlation coefficient r�
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2 � between the cooperator den-

sity 
i and the mean squared neighbor degree ki,nn
2 of site i vs temp-

tation to defect b for networks with a different amount of degree-
degree correlations; symbols are as in Fig. 1�a�.
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small, regardless of the degree-degree correlations. What
happens for two nodes with a large degree, one being a de-
fector and one being a cooperator, with a distinct neighbor-
hood is that the defector convinces its neighbors with a
smaller degree to defect and the cooperator convinces its
neighbors with a smaller degree to cooperate. After just a
couple of played rounds, the payoff of the cooperator will
exceed the payoff of the defector, and there is only a small
time window in which the defector might turn the strategy of
the cooperator, after which the cooperator will ultimately
turn the defector into a cooperator, resulting in two con-
nected cooperator nodes with a large degree. This explains
why assortative networks have a higher level of cooperation
than disassortative networks for large temptation to defect
�b�2�, as there are more connections between nodes with a
large degree. For small temptation to defect �b�1�, the situ-
ation is different as defectors can only survive in cliques of
nodes with a small degree which are more abundant in as-
sortative than in disassortative networks.

B. Enhanced clustering

A similarly large yet different impact on the evolutionary
dynamics is observed for different levels of enhanced clus-
tering, i.e., of enhanced number of closed triangles. Net-
works with enhanced clustering favor the inferior strategy
�the strategy having the lower density�, which indicates a
certain amount of niche building. This can be seen in the
cooperator density 
, the pure cooperator density 
c, and the
pure defector density 
d �see Figs. 5�a�–5�c��, which all show
a crossing of the curves for different levels of effective clus-
tering c̃ at approximatively the same density 0.5 and hence
for different temptation to defect b. As a consequence, coop-
eration remains significant for a larger interval of b and the
densities 
, 
c, and 
d can differ by factors of 3, 10, and 2,
respectively, see Figs. 6�a�–6�c�. Interestingly, enhanced
clustering causes the pure cooperators to get spread over sev-
eral mutually disconnected components, as indicated by the
mean number Cc of such components, see Fig. 5�d�. These
different components have a small surface-to-volume ratio
�as measured by the mean fraction ncf of pure cooperators
which have at least one neighbor with fluctuating strategy,
see Fig. 5�e��, which indicates that the pure cooperators oc-
cupy modules which are well-connected internally but only
poorly to the outside, helping cooperation to remain signifi-
cant for larger temptation to defect b �for enhanced cluster-
ing c̃�0, ncf even decreases for b�2�. The discontinuous
behavior of ncf at b=2 is again caused by stable interactions
between pure cooperators and pure defectors which occur for
this integer value of b. Similar to assortativity, enhanced
clustering causes an increased cooperator density for large
temptation to defect b, but in difference to that case, the
mean degree � of cooperator nodes decreases with increasing
clustering, see Fig. 2�f�. The reason is that the significant
increase in the absolute number of cooperators is the stron-
gest factor determining their mean degree because coopera-
tors tend to be on nodes with the largest degree available in
the network, and as the absolute number of cooperators in-
creases with increasing clustering, more nodes of smaller

degree become cooperators, leading to a decrease of the
mean degree � of cooperators.

The present data also allows one to draw some conclu-
sions concerning the influence of the maximal degree kmax on
the evolutionary dynamics by comparing the case �=0 in
Fig. 2 with the case c̃=0 in Fig. 5, which differ by the value
of the maximal degree kmax �24�. One notices that coopera-
tors have better chances in networks with a larger value of
maximal degree kmax, which was already expected from pre-
vious work �16�, in particular for large temptation to defect b
�note that Barabási-Albert networks studied in Ref. �16� have
no fixed value of kmax which consequently fluctuates strongly
between different network realizations and the mean value of
the achieved maximal degree is much higher, 
kmax�=169.2
for N=4000, so that cooperators have a significant contribu-
tion to the dynamics even for 2b	3�. In our case, the
mean degree 
k� of the network also changes inevitably with
kmax,which might have an influence as well. The differences
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FIG. 5. �a� Mean cooperator density 
, �b� mean pure cooperator
density 
c, �c� mean pure defector density 
d, �d� mean number of
components Cc of pure cooperators, �e� mean fraction ncf of pure
cooperators which have at least one neighbor with fluctuating strat-
egy, and �f� mean degree � of cooperator nodes vs temptation to
defect b for networks with a different amount of enhanced cluster-
ing; symbols are as in Fig. 1�b�.
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induced by different values of kmax are on the order of mag-
nitude of the differences induced by degree-degree correla-
tions or enhanced clustering.

C. Comparison with reshuffled Barabási-Albert networks

Our results concerning the effect of assortativity are ap-
parently in contradiction to recent studies of the prisoner’s
dilemma game on Barabási-Albert networks with different
direction and probability of reshuffling �i.e., assortative and
disassortative mixing� �25�, where it has been found that as-
sortativity diminishes cooperation, whereas we observe the
opposite effect. To elucide this apparent contradiction, we
produced such reshuffled Barabási-Albert networks with
N=4000 nodes and mean degree 
k�=4, where the direction
and probability of reshuffling was chosen such that the re-
sulting Newman correlation coefficients r are similar to the
ones we use above. The resulting mean nearest-neighbor de-

gree knn�k� is shown in Fig. 7. As this function is not mo-
notonously increasing for assortative mixing, these networks
are assortative only on average, as measured by the Newman
correlation coefficient r. Barabási-Albert networks and espe-
cially reshuffled Barabási-Albert networks have certainly
their right to being studied, in particular if one assumes some
growth mechanism for the network �for instance, in the di-
rection of an evolution of the underlying network with the
dynamics �26��. However, the value of knn�k� is smaller for
nodes with large degree k than for nodes with intermediate
degree for assortative mixing, hence no clear conclusion con-
cerning the effect of assortativity is possible using these net-
works.

We have analyzed the evolutionary dynamics of the pris-
oner’s dilemma game on these networks and plot the mean
cooperator density 
 in Fig. 8. This data reproduces the re-
sults of Ref. �25� regarding assortative and disassortative
mixing �the differences are due to the fact that we use N
=4000 instead of N=5000 nodes to allow for a comparison
with our data presented above�. As Barabási-Albert networks
with assortative or disassortative mixing are not simply as-
sortative or disassortative in the sense of a monotonous mean
nearest-neighbor function knn�k�, the dynamics is not solely
governed by degree-degree correlations. The differences to
our networks become particularly clear when looking on the
correlations between the state 
i and the squared degree ki
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FIG. 7. Measured mean nearest-neighbor degree knn�k� vs de-
gree k, for Barabási-Albert networks with different direction and
probability of reshuffling, disassortative mixing with p=0.1956
�closed triangle, Newman correlation coefficient r=−0.058�, with-
out reshuffling �open circle, r=−0.055�, assortative mixing with p
=0.1564 �closed square, r=0� and p=0.4781 �open diamond, r
=0.067�. As 
k�=4 and 
k2�=54, one has 
knn�=14. For Barabási-
Albert networks the maximal degree kmax is not fixed, and one finds

kmax�=169.2.
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and the mean squared neighbor degree ki,nn
2 of node i, shown

in Fig. 9, which are much smaller when compared to those
shown in Fig. 4.

IV. CONCLUSIONS

We have studied how cooperation organizes dynamically
in the prisoner’s dilemma game when played on heteroge-
neous scale-free networks with different levels of �a� degree-
degree correlations and �b� enhanced clustering, where the
number of neighbors of connected nodes are correlated and
the number of closed triangles are enhanced, respectively.
These two topological features are the two most characteris-

tic ones of a given network besides the degree distribution
and significantly change the dynamics with respect to the one
observed for fully randomized scale-free networks. Assorta-
tive degree-degree correlations substantially enhance coop-
eration for temptation to defect b�2 whereas enhanced clus-
tering considerably reduces the surface-to-volume ratio of
emerging cooperating components, allows several of them to
exist, and thus facilitates cooperation even for a very high
temptation to defect. Most social networks are assortative
and clustered �18�, and thus it appears reasonable to consider
degree-degree correlations and enhanced clustering in inter-
action networks as important factors in the evolution and
sustainment of cooperation.
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